设计模式七大原则
设计模式七大原则
目的
编写软件过程中,程序员面临着来自 耦合性,内聚性以及可维护性,可扩展性,重用性,灵活性等多方面的挑战,设计模式是为了让程序(软件),具有更好
代码重用性 (即:相同功能的代码,不用多次编写)。
可读性 (即:编程规范性, 便于其他程序员的阅读和理解)。
可扩展性 (即:当需要增加新的功能时,非常的方便,称为可维护)。
可靠性 (即:当我们增加新的功能后,对原来的功能没有影响)。
使程序呈现高内聚,低耦合的特性。
分享金句
设计模式包含了面向对象的精髓,“懂了设计模式,你就懂了面向对象分析和设计(OOA/D)的精要”
Scott Mayers 在其巨著《Effective C++》就曾经说过:C++老手和 C++新手的区别就是前者手背上有很多伤疤
七大原则
- 单一职责原则
- 接口隔离原则
- 依赖倒转原则
- 里氏替换原则
- 开闭原则ocp
- 迪米特法则
- 合成复用原则
1、单一职责原则
介绍
对类来说的,即一个类应该只负责一项职责。如类A负责两个不同职责:职责1,职责2。当职责1需求变更而改变A时,可能造成职责2执行错误,所以需要将类A的粒度分解为 A1,A2。
应用实例
方案一
package com.lzw.principle.singleresponsibility;
public class SingleResponsibility1 {
public static void main(String[] args) {
Vehicle vehicle = new Vehicle();
vehicle.run("摩托车");
vehicle.run("汽车");
vehicle.run("飞机");
}
}
// 交通工具类
// 方式1
// 1. 在方式1 的run方法中,违反了单一职责原则
// 2. 解决的方案非常的简单,根据交通工具运行方法不同,分解成不同类即可
class Vehicle {
public void run(String vehicle) {
System.out.println(vehicle + " 在公路上运行....");
}
}
方案二
package com.lzw.principle.singleresponsibility;
public class SingleResponsibility2 {
public static void main(String[] args) {
RoadVehicle roadVehicle = new RoadVehicle();
roadVehicle.run("摩托车");
roadVehicle.run("汽车");
AirVehicle airVehicle = new AirVehicle();
airVehicle.run("飞机");
}
}
//方案2的分析
//1. 遵守单一职责原则
//2. 但是这样做的改动很大,即将类分解,同时修改客户端
//3. 改进:直接修改Vehicle 类,改动的代码会比较少=>方案3
class RoadVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "公路运行");
}
}
class AirVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "天空运行");
}
}
class WaterVehicle {
public void run(String vehicle) {
System.out.println(vehicle + "水中运行");
}
}
方案三
package com.lzw.principle.singleresponsibility;
public class SingleResponsibility3 {
public static void main(String[] args) {
Vehicle2 vehicle2 = new Vehicle2();
vehicle2.run("汽车");
vehicle2.runWater("轮船");
vehicle2.runAir("飞机");
}
}
//方式3的分析
//1. 这种修改方法没有对原来的类做大的修改,只是增加方法
//2. 这里虽然没有在类这个级别上遵守单一职责原则,但是在方法级别上,仍然是遵守单一职责
class Vehicle2 {
public void run(String vehicle) {
//处理
System.out.println(vehicle + " 在公路上运行....");
}
public void runAir(String vehicle) {
System.out.println(vehicle + " 在天空上运行....");
}
public void runWater(String vehicle) {
System.out.println(vehicle + " 在水中行....");
}
//方法2.
//..
//..
//...
}
注意事项和细节
降低类的复杂度,一个类只负责一项职责。
提高类的可读性,可维护性
降低变更引起的风险
通常情况下,我们应当遵守单一职责原则,只有逻辑足够简单,才可以在代码级违反单一职责原则;只有类中方法数量足够少,可以在方法级别保持单一职责原则
2、接口隔离原则
介绍
客户端不应该依赖它不需要的接口,即一个类对另一个类的依赖应该建立在最小的接口上
如图:
image-20220503205712518 类A通过接口Interface1依赖类B,类C通过接口Interface1依赖类D,如果接口Interface1对于类A和类C来说不是最小接口,那么类B和类D必须去实现他们不需要的方法。
按隔离原则应当这样处理:将接口Interface1拆分为独立的几个接口,类A和类C分别与他们需要的接口建立依赖关系。也就是采用接口隔离原则
应用实例
类A通过接口Interface1依赖类B, 类C通过接口Interface1依赖类D
package com.lzw.principle.segregation;
public class Segregation1 {
public static void main(String[] args) {
}
}
//接口
interface Interface1 {
void operation1();
void operation2();
void operation3();
void operation4();
void operation5();
}
class B implements Interface1 {
public void operation1() {
System.out.println("B 实现了 operation1");
}
public void operation2() {
System.out.println("B 实现了 operation2");
}
public void operation3() {
System.out.println("B 实现了 operation3");
}
public void operation4() {
System.out.println("B 实现了 operation4");
}
public void operation5() {
System.out.println("B 实现了 operation5");
}
}
class D implements Interface1 {
public void operation1() {
System.out.println("D 实现了 operation1");
}
public void operation2() {
System.out.println("D 实现了 operation2");
}
public void operation3() {
System.out.println("D 实现了 operation3");
}
public void operation4() {
System.out.println("D 实现了 operation4");
}
public void operation5() {
System.out.println("D 实现了 operation5");
}
}
class A { //A 类通过接口Interface1 依赖(使用) B类,但是只会用到1,2,3方法
public void depend1(Interface1 i) {
i.operation1();
}
public void depend2(Interface1 i) {
i.operation2();
}
public void depend3(Interface1 i) {
i.operation3();
}
}
class C { //C 类通过接口Interface1 依赖(使用) D类,但是只会用到1,4,5方法
public void depend1(Interface1 i) {
i.operation1();
}
public void depend4(Interface1 i) {
i.operation4();
}
public void depend5(Interface1 i) {
i.operation5();
}
}
使用接口隔离原则改进
- 类A通过接口Interface1依赖类B,类C通过接口Interface1依赖类D,如果接口Interface1对于类A和类C来说不是最小接口,那么类B和类D必须去实现他们不
需要的方法
将接口Interface1拆分为独立的几个接口,类A和类C分别与他们需要的接口建立依赖关系。也就是采用接口隔离原则
接口Interface1中出现的方法,根据实际情况拆分为三个接口
package com.lzw.principle.segregation.improve;
public class Segregation1 {
public static void main(String[] args) {
// 使用一把
A a = new A();
a.depend1(new B()); // A类通过接口去依赖B类
a.depend2(new B());
a.depend3(new B());
C c = new C();
c.depend1(new D()); // C类通过接口去依赖(使用)D类
c.depend4(new D());
c.depend5(new D());
}
}
// 接口1
interface Interface1 {
void operation1();
}
// 接口2
interface Interface2 {
void operation2();
void operation3();
}
// 接口3
interface Interface3 {
void operation4();
void operation5();
}
class B implements Interface1, Interface2 {
public void operation1() {
System.out.println("B 实现了 operation1");
}
public void operation2() {
System.out.println("B 实现了 operation2");
}
public void operation3() {
System.out.println("B 实现了 operation3");
}
}
class D implements Interface1, Interface3 {
public void operation1() {
System.out.println("D 实现了 operation1");
}
public void operation4() {
System.out.println("D 实现了 operation4");
}
public void operation5() {
System.out.println("D 实现了 operation5");
}
}
class A { // A 类通过接口Interface1,Interface2 依赖(使用) B类,但是只会用到1,2,3方法
public void depend1(Interface1 i) {
i.operation1();
}
public void depend2(Interface2 i) {
i.operation2();
}
public void depend3(Interface2 i) {
i.operation3();
}
}
class C { // C 类通过接口Interface1,Interface3 依赖(使用) D类,但是只会用到1,4,5方法
public void depend1(Interface1 i) {
i.operation1();
}
public void depend4(Interface3 i) {
i.operation4();
}
public void depend5(Interface3 i) {
i.operation5();
}
}
3、依赖倒转原则
介绍
- 高层模块不应该依赖低层模块,二者都应该依赖其抽象。
- 抽象不应该依赖细节,细节应该依赖抽象。
- 依赖倒转(倒置)的中心思想是面向接口编程。
- 依赖倒转原则是基于这样的设计理念:相对于细节的多变性,抽象的东西要稳定的多。以抽象为基础搭建的架构比以细节为基础的架构要稳定的多。在java中,抽象指的是接口或抽象类,细节就是具体的实现类。
- 使用接口或抽象类的目的是制定好规范,而不涉及任何具体的操作,把展现细节的任务交给他们的实现类去完成。
应用实例
完成Person接收消息的功能
package com.lzw.principle.inversion;
public class DependecyInversion {
public static void main(String[] args) {
Person person = new Person();
person.receive(new Email());
}
}
class Email{
public String getInfo(){
return "电子邮件信息:Hello world";
}
}
//完成Person接收消息的功能
//方式1分析
//1. 简单,比较容易想到
//2. 如果我们获取的对象是 微信,短信等等,则新增类,同时Perons也要增加相应的接收方法
//3. 解决思路:引入一个抽象的接口IReceiver, 表示接收者, 这样Person类与接口IReceiver发生依赖
// 因为Email, WeiXin 等等属于接收的范围,他们各自实现IReceiver 接口就ok, 这样我们就符号依赖倒转原则
class Person{
public void receive(Email email){
System.out.println(email.getInfo());
}
}
使用依赖倒转原则改进
package com.lzw.principle.inversion.improve;
public class DependecyInversion {
public static void main(String[] args) {
//客户端无需改变
Person person = new Person();
person.receive(new Email());
person.receive(new WeiXin());
}
}
//定义接口
interface IReceiver{
public String getInfo();
}
class Email implements IReceiver{
public String getInfo(){
return "电子邮件信息:Hello world2";
}
}
//增加微信
class WeiXin implements IReceiver {
public String getInfo() {
return "微信信息: hello,ok";
}
}
//方式2
class Person{
public void receive(IReceiver receiver){
System.out.println(receiver.getInfo());
}
}
依赖关系传递的三种方式
- 接口传递 2. 构造方法传递 3. setter方式传递
package com.lzw.principle.inversion.improve;
public class DependencyPass {
public static void main(String[] args) {
// 通过接口传递实现依赖
ChangHong changHong = new ChangHong();
// OpenAndClose openAndClose = new OpenAndClose();
// openAndClose.open(changHong);
// 通过构造器进行依赖传递
// OpenAndClose openAndClose = new OpenAndClose(changHong);
// openAndClose.open();
// 通过setter方法进行依赖传递
OpenAndClose openAndClose = new OpenAndClose();
openAndClose.setTv(changHong);
openAndClose.open();
}
}
// 方式1: 通过接口传递实现依赖
// 开关的接口
// interface IOpenAndClose {
// public void open(ITV tv); // 抽象方法,接收接口
// }
//
// interface ITV { // ITV接口
// public void play();
// }
//
// class ChangHong implements ITV {
//
// @Override
// public void play() {
// System.out.println("长虹电视机,打开");
// }
//
// }
//
//// 实现接口
// class OpenAndClose implements IOpenAndClose {
// public void open(ITV tv) {
// tv.play();
// }
// }
// 方式2: 通过构造方法依赖传递
// interface IOpenAndClose {
// public void open(); // 抽象方法
// }
//
// interface ITV { // ITV接口
// public void play();
// }
//
// class OpenAndClose implements IOpenAndClose {
// public ITV tv; // 成员
//
// public OpenAndClose(ITV tv) { // 构造器
// this.tv = tv;
// }
//
// public void open() {
// this.tv.play();
// }
// }
// 方式3 , 通过setter方法传递
interface IOpenAndClose {
public void open(); // 抽象方法
public void setTv(ITV tv);
}
interface ITV { // ITV接口
public void play();
}
class OpenAndClose implements IOpenAndClose {
private ITV tv;
public void setTv(ITV tv) {
this.tv = tv;
}
public void open() {
this.tv.play();
}
}
class ChangHong implements ITV {
@Override
public void play() {
// TODO Auto-generated method stub
System.out.println("长虹电视机,打开");
}
}
注意事项和细节
- 低层模块尽量都要有抽象类或接口,或者两者都有,程序稳定性更好。
- 变量的声明类型尽量是抽象类或接口, 这样我们的变量引用和实际对象间,就存在一个缓冲层,利于程序扩展和优化
- 继承时遵循里氏替换原则
4、里氏替换原则
OO中的继承性的思考和说明
- 继承包含这样一层含义:父类中凡是已经实现好的方法,实际上是在设定规范和契约,虽然它不强制要求所有的子类必须遵循这些契约,但是如果子类对这些已经实现的方法任意修改,就会对整个继承体系造成破坏。
- 继承在给程序设计带来便利的同时,也带来了弊端。比如使用继承会给程序带来侵入性,程序的可移植性降低,增加对象间的耦合性,如果一个类被其他的类所继承,则当这个类需要修改时,必须考虑到所有的子类,并且父类修改后,所有涉及到子类的功能都有可能产生故障。
- 问题提出:在编程中,如何正确的使用继承? => 里氏替换原则
介绍
- 里氏替换原则(Liskov Substitution Principle)在1988年,由麻省理工学院的一位姓里的女士提出的。
- 如果对每个类型为T1的对象o1,都有类型为T2的对象o2,使得以T1定义的所有程序P在所有的对象o1都代换成o2时,程序P的行为没有发生变化,那么类型T2是类型T1的子类型。换句话说,所有引用基类的地方必须能透明地使用其子类的对象。
- 在使用继承时,遵循里氏替换原则,在子类中尽量不要重写父类的方法.
- 里氏替换原则告诉我们,继承实际上让两个类耦合性增强了,在适当的情况下,可以通过聚合,组合,依赖 来解决问题。
应用实例
package com.lzw.principle.liskov;
public class Liskov {
public static void main(String[] args) {
A a = new A();
System.out.println("11-3=" + a.func1(11, 3));
System.out.println("1-8=" + a.func1(1, 8));
System.out.println("-----------------------");
B b = new B();
System.out.println("11-3=" + b.func1(11, 3));// 这里本意是求出11-3
System.out.println("1-8=" + b.func1(1, 8));// 1-8
System.out.println("11+3+9=" + b.func2(11, 3));
}
}
// A类
class A {
// 返回两个数的差
public int func1(int num1, int num2) {
return num1 - num2;
}
}
// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends A {
// 这里,重写了A类的方法, 可能是无意识
public int func1(int a, int b) {
return a + b;
}
public int func2(int a, int b) {
return func1(a, b) + 9;
}
}
使用里氏替换原则改进
- 我们发现原来运行正常的相减功能发生了错误。原因就是类B无意中重写了父类的方法,造成原有功能出现错误。在实际编程中,我们常常会通过重写父类的方法完成新的功能,这样写起来虽然简单,但整个继承体系的复用性会比较差。特别是运行多态比较频繁的时候。
- 通用的做法是:原来的父类和子类都继承一个更通俗的基类,原有的继承关系去掉,采用依赖,聚合,组合等关系代替。

package com.lzw.principle.liskov.improve;
public class Liskov {
public static void main(String[] args) {
A a = new A();
System.out.println("11-3=" + a.func1(11, 3));
System.out.println("1-8=" + a.func1(1, 8));
System.out.println("-----------------------");
B b = new B();
// 因为B类不再继承A类,因此调用者,不会再认为func1是求减法
// 调用完成的功能就会很明确
System.out.println("11+3=" + b.func1(11, 3));// 这里本意是求出11+3
System.out.println("1+8=" + b.func1(1, 8));// 1+8
System.out.println("11+3+9=" + b.func2(11, 3));
// 使用组合仍然可以使用到A类相关方法
System.out.println("11-3=" + b.func3(11, 3));// 这里本意是求出11-3
}
}
// 创建一个更加基础的基类
class Base {
// 把更加基础的方法和成员写到Base类
}
// A类
class A extends Base {
// 返回两个数的差
public int func1(int num1, int num2) {
return num1 - num2;
}
}
// B类继承了A
// 增加了一个新功能:完成两个数相加,然后和9求和
class B extends Base {
// 如果B需要使用A类的方法,使用组合关系
private A a = new A();
// 这里,重写了A类的方法, 可能是无意识
public int func1(int a, int b) {
return a + b;
}
public int func2(int a, int b) {
return func1(a, b) + 9;
}
// 我们仍然想使用A的方法
public int func3(int a, int b) {
return this.a.func1(a, b);
}
}
5、开闭原则
介绍
- 开闭原则(Open Closed Principle)是编程中最基础、最重要的设计原则。
- 一个软件实体如类,模块和函数应该对扩展开放(对提供方),对修改关闭(对使用方)。用抽象构建框架,用实现扩展细节。
- 当软件需要变化时,尽量通过扩展软件实体的行为来实现变化,而不是通过修改已有的代码来实现变化。
- 编程中遵循其它原则,以及使用设计模式的目的就是遵循开闭原则。
应用实例

画图形功能
package com.lzw.principle.ocp;
public class Ocp {
public static void main(String[] args) {
// 使用看看存在的问题
GraphicEditor graphicEditor = new GraphicEditor();
graphicEditor.drawShape(new Rectangle());
graphicEditor.drawShape(new Circle());
graphicEditor.drawShape(new Triangle());
}
}
// 这是一个用于绘图的类 [使用方]
class GraphicEditor {
// 接收Shape对象,然后根据type,来绘制不同的图形
public void drawShape(Shape s) {
if (s.m_type == 1)
drawRectangle(s);
else if (s.m_type == 2)
drawCircle(s);
else if (s.m_type == 3)
drawTriangle(s);
}
// 绘制矩形
public void drawRectangle(Shape r) {
System.out.println(" 绘制矩形 ");
}
// 绘制圆形
public void drawCircle(Shape r) {
System.out.println(" 绘制圆形 ");
}
// 绘制三角形
public void drawTriangle(Shape r) {
System.out.println(" 绘制三角形 ");
}
}
// Shape类,基类
class Shape {
int m_type;
}
class Rectangle extends Shape {
Rectangle() {
super.m_type = 1;
}
}
class Circle extends Shape {
Circle() {
super.m_type = 2;
}
}
// 新增画三角形
class Triangle extends Shape {
Triangle() {
super.m_type = 3;
}
}
优缺点
优点是比较好理解,简单易操作。
缺点是违反了设计模式的ocp原则,即对扩展开放(提供方),对修改关闭(使用方)。即当我们给类增加新功能的时候,尽量不修改代码,或者尽可能少修改代码。
比如我们这时要新增加一个图形种类 三角形,我们需要做如下修改,修改的地方较多
使用开闭原则改进
把创建Shape类做成抽象类,并提供一个抽象的draw方法,让子类去实现即可,这样我们有新的图形种类时,只需要让新的图形类继承Shape,并实现draw方法即可,使用方的代码就不需要修改 -> 满足了开闭原则
package com.lzw.principle.ocp.improve;
public class Ocp {
public static void main(String[] args) {
// 使用看看存在的问题
GraphicEditor graphicEditor = new GraphicEditor();
graphicEditor.drawShape(new Rectangle());
graphicEditor.drawShape(new Circle());
graphicEditor.drawShape(new Triangle());
graphicEditor.drawShape(new OtherGraphic());
}
}
// 这是一个用于绘图的类 [使用方]
class GraphicEditor {
// 接收Shape对象,然后根据type,来绘制不同的图形
public void drawShape(Shape s) {
s.draw();
}
}
// Shape类,基类
abstract class Shape {
int m_type;
public abstract void draw();// 抽象方法
}
class Rectangle extends Shape {
Rectangle() {
super.m_type = 1;
}
@Override
public void draw() {
System.out.println(" 绘制矩形");
}
}
class Circle extends Shape {
Circle() {
super.m_type = 2;
}
@Override
public void draw() {
System.out.println(" 绘制圆形");
}
}
// 新增画三角形
class Triangle extends Shape {
Triangle() {
super.m_type = 3;
}
@Override
public void draw() {
System.out.println(" 绘制三角形");
}
}
// 新增一个图形
class OtherGraphic extends Shape {
OtherGraphic() {
super.m_type = 4;
}
@Override
public void draw() {
System.out.println(" 绘制其他图形");
}
}
6、迪米特原则
介绍
一个对象应该对其他对象保持最少的了解。
类与类关系越密切,耦合度越大。
迪米特法则(Demeter Principle)又叫最少知道原则,即一个类对自己依赖的类知道的越少越好。也就是说,对于被依赖的类不管多么复杂,都尽量将逻辑封装在类的内部。对外除了提供的public 方法,不对外泄露任何信息。
迪米特法则还有个更简单的定义:只与直接的朋友通信。
直接的朋友:每个对象都会与其他对象有耦合关系,只要两个对象之间有耦合关系,我们就说这两个对象之间是朋友关系。耦合的方式很多,依赖,关联,组合,聚合等。其中,我们称出现成员变量,方法参数,方法返回值中的类为直接的朋友,而出现在局部变量中的类不是直接的朋友。也就是说,陌生的类最好不要以局部变量的形式出现在类的内部。
应用实例
有一个学校,下属有各个学院和总部,现要求打印出学校总部员工ID和学院员工的id
package com.lzw.principle.demeter;
import java.util.ArrayList;
import java.util.List;
//客户端
public class Demeter1 {
public static void main(String[] args) {
// 创建了一个 SchoolManager 对象
SchoolManager schoolManager = new SchoolManager();
// 输出学院的员工id 和 学校总部的员工信息
schoolManager.printAllEmployee(new CollegeManager());
}
}
// 学校总部员工类
class Employee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
// 学院的员工类
class CollegeEmployee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
// 管理学院员工的管理类
class CollegeManager {
// 返回学院的所有员工
public List<CollegeEmployee> getAllEmployee() {
List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
for (int i = 0; i < 10; i++) { // 这里我们增加了10个员工到 list
CollegeEmployee emp = new CollegeEmployee();
emp.setId("学院员工id= " + i);
list.add(emp);
}
return list;
}
}
// 学校管理类
// 分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
// CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则
class SchoolManager {
// 返回学校总部的员工
public List<Employee> getAllEmployee() {
List<Employee> list = new ArrayList<Employee>();
for (int i = 0; i < 5; i++) { // 这里我们增加了5个员工到 list
Employee emp = new Employee();
emp.setId("学校总部员工id= " + i);
list.add(emp);
}
return list;
}
// 该方法完成输出学校总部和学院员工信息(id)
void printAllEmployee(CollegeManager sub) {
// 分析问题
// 1. 这里的 CollegeEmployee 不是 SchoolManager的直接朋友
// 2. CollegeEmployee 是以局部变量方式出现在 SchoolManager
// 3. 违反了 迪米特法则
// 获取到学院员工
List<CollegeEmployee> list1 = sub.getAllEmployee();
System.out.println("------------学院员工------------");
for (CollegeEmployee e : list1) {
System.out.println(e.getId());
}
// 获取到学校总部员工
List<Employee> list2 = this.getAllEmployee();
System.out.println("------------学校总部员工------------");
for (Employee e : list2) {
System.out.println(e.getId());
}
}
}
使用迪米特原则改进
前面设计的问题在于SchoolManager中,CollegeEmployee类并不是SchoolManager类的直接朋友 (分析)
按照迪米特法则,应该避免类中出现这样非直接朋友关系的耦合
package com.lzw.principle.demeter.improve;
import java.util.ArrayList;
import java.util.List;
//客户端
public class Demeter1 {
public static void main(String[] args) {
System.out.println("使用迪米特法则改进");
// 创建了一个 SchoolManager 对象
SchoolManager schoolManager = new SchoolManager();
// 输出学院的员工id 和 学校总部的员工信息
schoolManager.printAllEmployee(new CollegeManager());
}
}
// 学校总部员工类
class Employee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
// 学院的员工类
class CollegeEmployee {
private String id;
public void setId(String id) {
this.id = id;
}
public String getId() {
return id;
}
}
// 管理学院员工的管理类
class CollegeManager {
// 返回学院的所有员工
public List<CollegeEmployee> getAllEmployee() {
List<CollegeEmployee> list = new ArrayList<CollegeEmployee>();
for (int i = 0; i < 10; i++) { // 这里我们增加了10个员工到 list
CollegeEmployee emp = new CollegeEmployee();
emp.setId("学院员工id= " + i);
list.add(emp);
}
return list;
}
// 输出学院员工的信息
public void printEmployee() {
// 获取到学院员工
List<CollegeEmployee> list1 = getAllEmployee();
System.out.println("------------学院员工------------");
for (CollegeEmployee e : list1) {
System.out.println(e.getId());
}
}
}
// 学校管理类
// 分析 SchoolManager 类的直接朋友类有哪些 Employee、CollegeManager
// CollegeEmployee 不是 直接朋友 而是一个陌生类,这样违背了 迪米特法则
class SchoolManager {
// 返回学校总部的员工
public List<Employee> getAllEmployee() {
List<Employee> list = new ArrayList<Employee>();
for (int i = 0; i < 5; i++) { // 这里我们增加了5个员工到 list
Employee emp = new Employee();
emp.setId("学校总部员工id= " + i);
list.add(emp);
}
return list;
}
// 该方法完成输出学校总部和学院员工信息(id)
void printAllEmployee(CollegeManager sub) {
// 分析问题
// 1. 将输出学院的员工方法,封装到 CollegeManager
sub.printEmployee();
// 获取到学校总部员工
List<Employee> list2 = this.getAllEmployee();
System.out.println("------------学校总部员工------------");
for (Employee e : list2) {
System.out.println(e.getId());
}
}
}
注意事项和细节
迪米特法则的核心是降低类之间的耦合
注意:由于每个类都减少了不必要的依赖,因此迪米特法则只是要求降低类间(对象间)耦合关系, 并不是要求完全没有依赖关系。
7、合成复用原则
原则是尽量使用合成/聚合的方式,而不是使用继承

设计原则核心思想
找出应用中可能需要变化之处,把它们独立出来,不要和那些不需要变化的代码混在一起。
针对接口编程,而不是针对实现编程。
为了交互对象之间的松耦合设计而努力。